报告题目:A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities
报告人:武培怡教授
报告地点:独墅湖校区907-1101
报告时间:2018年8月25日,10:00
报告简介:Biomimetic skin-like materials, capable of adapting shapes to variable environments and sensing external stimuli, are of great significance in a wide range of applications, including artificial intelligence, soft robotics, and smart wearable devices. However, such highly sophisticated intelligence has been mainly found in natural creatures while rarely realized in artificial materials. Herein, we fabricate a type of biomimetic iontronics to imitate natural skins using supramolecular polyelectrolyte hydrogels. The dynamic viscoelastic networks provide the biomimetic skin with a wide spectrum of mechanical properties, including flexible reconfiguration ability, robust elasticity, extremely large stretchability, autonomous self-healability, and recyclability. Meanwhile, polyelectrolytes’ ionic conductivity allows multiple sensory capabilities toward temperature, strain, and stress. This work provides not only insights into dynamic interactions and sensing mechanism of supramolecular iontronics, but may also promote the development of biomimetic skins with sophisticated intelligence similar to natural skins.
武培怡,教授,博士生导师
国家杰出青年基金获得者(2004),英国皇家化学会会士
主要研究方向:
二维相关光谱在聚合物体系中的应用
仿生材料
聚合物功能膜
代表性工作:
Zhouyue Lei, and Peiyi Wu*. A Supramolecular Biomimetic Skin Combining a Wide Spectrum of Mechanical Properties and Multiple Sensory Capabilities. Nat. Commun. 2018, 9, 1134.
Zhouyue Lei, Quankang Wang, Shengtong Sun, Wencheng Zhu, and Peiyi Wu*. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321.
Shengjie Xu, Dian Li, and Peiyi Wu*. One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.