Discover and Predict with Self-Assembling Dendrons, Dendrimers and Bioinspired Synthesis

题目:Discover and Predict with Self-Assembling Dendrons, Dendrimers and Bioinspired Synthesis


报告人:Prof.Virgil Percec,University of Pennsylvania


地点:独墅湖校区912-1112


时间:2019527()10:00-11:00


摘要

This lecture will discuss, with selected examples, how to discover and predict with self-assembling dendrons and dendrimers (1a,b) by using the concept of bioinspired synthesis. A large diversity of new concepts and new research fields were discovered by employing bioinspired synthesis. Selected examples are: liquid quasicrystals and their approximants also known as Frank-Kasper soft phases (1c, d, e) that were subsequently found in block copolymers, surfactants, phospholipids and in numerous other areas of soft matter generating one of the most active new field of research. Quasicrystal approximants also led to the discovery of a new concept in living radical polymerization that is not based on reversible activation as ATRP, SET-LRP and all other conventional living radical polymerizations are (1f). The replacement of Pd with the much less expensive but more reactive Ni in borylation and Suzuki cross-coupling reactions including the most reactive but air-stable sigma Ni catalysts (1g,h), supramolecular orientational memory effect (1i,j), deracemization in crystal state as a mechanism for the origins of biological homochirality and of isotactic supramolecular polymers from atactic polymers (1k,l), as well as the discovery that sequence-defined monodisperse self-assembling Janus dendrimers and glycodendrimers and their hybrids with bacterial and human cells are efficient biological membrane mimics with encoded functions, are just few of the additional examples that will be discussed (2,3) in this lecture.

References:

[l] (a) Rosen, B.M.; Wilson, C.J.; Wilson, D.A.; Peterca, M.; Imam, M.R.; Percec, V. Chem. Rev. 2009,109, 6275-6540. (b) Shermann, S. E.; Xiao, Q.; Percec, V. Chem. Rev. 2017,117, 6538-6631. (c) Zeng, X.B.; Ungar, G.; Liu, Y.S.; Percec, V.; Dulcey, S.E.; Hobbs, J.K. Nature2004, 428, 157-160; (d) Ungar, G.; Liu, Y.S.; Ungar, G.; Zeng, X.B.; Percec, V.; Cho, W.D. Science 2003, 299, 1208-1211; (e) Hudson, S.D.; Jung, H.T.; Percec, V.; Cho, W.D.; Johansson, J.; Ungar, G.; Balagurusamy, V.S.K. Science1997, 278, 449-452; (f) Percec, V.; Ahn, C.H.; Ungar, G.; Yeardley, D.J.P.; Moeller, M.; Sheiko, S.S. Nature1998, 391, 161-164; (g) Rosen, B.M.; Quasdorf, K.W.; Wilson, D.A.; Zhang, N.; Resmerita, A.M.; Garg, N.K.; Percec, V. Chem. Rev. 2011, 111, 1346-1416; (h)  Jezorek, R.L.; Zhang, N.; Leowanawat, P.; Bunner, M.N.; Gutsche, N.; Pesti, A.K.R.; Olsen, J.T. Percec, V. Org. Lett.2014, 16, 6326-6329; (i) Peterca, M.; Imam, M.R.; Hudson, S.D.; Partridge, B.E.; Sahoo, D.; Heiney, P.A.; Klein, M.L.; Percec, V. ACS Nano2016, 10, 10480-10488; (j) Sahoo, D.; Peterca, M.; Aqad, E.; Partridge, B.E.; Heiney, P.A.; Graf, R.; Spiess, H. W.; Zeng, X.B.; Percec, V. ACS Nano, 2017, 11, 983-991; (k)  Roche, C.; Sun, H.J.; Prendergast, M.E.; Leowanawat, Partridge, B.E.; Heiney, P.A.;  Araoka, F.; Graf, R.; Spiess, H.W.; Zeng X.B.; Ungar, G.; Percec, V. J. Am. Chem. Soc.2014, 136, 7169-7185. (l) Roche, C.; Sun,H.J.; Leowanawat, P.; Araoka, F.; Partridge, P.E.; Peterca, M.; Wilson, D.A.; Pendergrast, M.E.; Heiney, P.A.; Graf, R.; Spiess, W.H.; Zeng, X.B.; Ungar, G.; Percec, V. Nature Chem. 2016, 8, 80-89.

[2] (a) Percec, V.; Wilson, D.A.; Leowanawat, P.; Wilson, C.J.; Hugh, A.D.; Kaucher, M.S.; Hammer, D.A.; Levine, D.H.; Kim, A.J.; Bates, F.S.; Davis, K.P.; Lodge, T.P.; Klein, M.L.; DeVane, RT.H.; Aqad, E.; Rosen, B.M.; Argintaru, A.O.; Sienkowska, M.J.; Rissanen, K.; Nummelin, S.; Roponen, J. Science2010, 328, 1009-1014. (b) Percec, V. et al Nature2012, 419, 384-387; (c)Percec, V.; Dulcey, A.E.; Balagurusamy V.S.K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlung, U.; Hudsao, S.D.; Heiney, P.A.; Duan, H.; Magonov, S.N.; Vinogradov, S.A. Nature2004, 430, 764-768.

[3] (a) Yadavalli, S. S.; Xiao, Q.; Sherman, S. E.; Hasley, W. D.; Klein, M. L.; Goulian, M.; Percec, V. Proc. Natl. Acad. Sci. U.S.A.2019, 116, 744-752. (b)Rodriguez-Emmenegger, C.; Xiao, Q.; Kostina, N. Y.; Sherman, S. E.; Rahimi, K.; Partridge, B. E.; Li, S.; Sahoo, D.; Reveron Perez, A. M.; Buzzacchera, I.; Han, H.; Kerzner, M.; Malhotra, I.; Möller, M.; Wilson, C. J.; Good, M. C.; Goulian, M.; Baumgart, T.; Klein, M. L.; Percec, V. Proc. Natl. Acad. Sci. U.S.A.2019. 116, 5376-5382.



个人简介

Virgil Percec 教授是高分子化学与超分子化学领域的顶尖专家,现任美国宾夕法尼亚大学Vagelos Chair 讲席教授,美国科学促进协会会士(Fellow of the American Association for the Advancement of Science),瑞典皇家科学院外籍院士( Foreign Member of the Royal Swedish Academy of Engineering Sciences),罗马尼亚科学院外籍院士(Honorary Foreign Member of the Romanian Academy),曾任J. Polym. Sci., Polym. Chem. 主编与Chem. Rev. 客座主编。

Percec 教授在包括ScienceNatureNature Chemistry等重要期刊上发表论文超过750篇,获得了包括American Chemical Society Award in Polymer Chemistry (2004), National Science Foundation Research Award for Creativity in Research (1990, 1995, 2000, 2016), Alexander von Humboldt Research Award (1997), Staudinger-Durrer Medal (2005)在内的众多重要奖项。



                                                            (报告联系人:张正彪老师)